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ABSTRACT
Distributed processing of large, dynamic graphs has recently
received considerable attention, especially in domains such
as the analytics of social networks, web graphs and spatial
networks. k-core decomposition is one of the significant fig-
ures of merit that can be analyzed in graphs. Efficient algo-
rithms to compute k-cores exist already, both in centralized
and decentralized setting. Yet, these algorithms have been
designed for static graphs, without significant support to
deal with the addition or removal of nodes and edges. Typi-
cally, this challenge is handled by re-executing the algorithm
again on the updated graph. In this work, we propose dis-
tributed k-core decomposition and maintenance algorithms
for large dynamic graphs. The proposed algorithms exploit,
as much as possible, the topology of the graph to compute all
the k-cores and maintain them in streaming settings where
edge insertions and removals happen frequently. The key
idea of the maintenance strategy is that whenever the orig-
inal graph is updated by the insertion/deletion of one or
more edges, only a limited number of nodes need their core-
ness to be re-evaluated. We present an implementation of
the proposed approach on top of the akka framework, and
experimentally show the efficiency of our approach in the
case of large dynamic networks.
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Keywords
Distributed k-core decomposition, k-core maintenance, Dy-
namic graphs, akka framework

∗Work primarily done while the author was at the University
of Trento.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

DEBS ’16, June 20-24, 2016, Irvine, California, USA

c© 2016 ACM. ISBN 978-1-4503-4021-2/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2933267.2933299

1. INTRODUCTION
Over the last decade, the field of distributed processing of

large graphs has attracted considerable attention. This field
has been highly motivated, not only by the increasing size
of graph data, but also by its huge number of applications.
Such applications include the analysis of social networks [7,
17], Web graphs [2], as well as spatial networks [14]. k-core
decomposition is an important task that has been used to
understand large graph data by identifying k-cores, which
are a special family of maximally-induced subgraphs. In-
tuitively, a k-core is obtained by recursively removing all
nodes of degree smaller than k, until the degree of all re-
maining vertices is larger than or equal to k. A node is said
to have coreness k if it belongs to the k-core but not to the
(k + 1)-core [5]. The k-core decomposition has been used in
several different domains including bioinformatics [4], graph
visualization [18] and Internet structure analysis [3].

Several algorithms exist for k-core computation in static
graphs, both in centralized and decentralized settings. Yet,
modern graphs are growing dramatically and are becom-
ing more and more dynamic, with an ever-increasing rate
of node/edge additions or removals. In such environments,
there is an urgent need for solutions that not only compute
the k-core of large graphs, but are also able to maintain it
in an efficient way while the data is constantly changing.

Our work is motivated by two factors. First, the size of the
graphs is becoming so large, that makes it difficult to pro-
cess with off-the-shelf, single machines. Second, and most
important, the fact that the majority of the existing large
graphs are already stored in a distributed way, either be-
cause they cannot be stored on a single machine due to their
sheer size, or because they get processed and analyzed with
decentralized techniques that require them to be distributed
among a collection of machines. For these reasons, we iden-
tified the need of methods and techniques that can exploit
as much as possible the existing topology of the graph data
and perform the k-core decomposition in a cooperative way
among the distribution nodes. Our solution is based on the
idea of recomputing the coreness only for those nodes of the
graph that are affected by the graph updates. The prop-
agation of the effect is done first inside the partition that
exists in a single node, and then across partitions by con-
sidering the cut edges, i.e., edges between nodes of different
partitions. To the best of our knowledge, the proposed so-
lution is the first that allows to consider graph streams and
incremental changes while computing k-core decomposition



in graphs that are already stored in a distributed manner.
More specifically, our contributions are the following:

• We present a distributed and streaming k-core decom-
position algorithm for very large graphs that are parti-
tioned and distributed across the nodes of a physically
independent network of machines.

• We propose a maintenance strategy that deals with
incremental changes on the graph by looking to the
nodes that need to be updated in all the partitions
and updating the coreness of only those nodes.

• We present an implementation of our algorithms on
top of akka [19], a framework for building distributed
and resilient message-driven applications. We experi-
mentally evaluate the performance of the proposed ap-
proach on both real and synthetic datasets.

The remainder of the paper is organized as follows. Sec-
tion 2 presents an overview of the related work and specifi-
cally those works that deal with the concept of distributed
k-core decomposition. In Section 3, we define the problem of
distributed k-core decomposition in large dynamic graphs.
In Section 4, we present our incremental approach for the k-
core maintenance in such graphs. In Section 5, we describe
our experimental evaluation and we discuss our findings.

2. RELATED WORK
In this section we highlight the relevant literature in the

field of k-core decomposition. We consider three research
areas: (1) centralized algorithms, (2) distributed algorithms
and (3) distributed and streaming algorithms for k-core de-
composition and maintenance in dynamic graphs.

Centralized algorithms. The first k-core decomposition
algorithm was originally proposed by Batagelj and Zavernik
(BZ) [5]. The main idea of the algorithm is to recursively
delete vertices of degree less than k. It requires random ac-
cess to the whole graph, which should therefore be kept in
the main memory for the sake of performance. Cheng et
al. [6] have proposed a strategy based on the BZ algorithm
to handle graphs that do not fit into main memory. The pro-
posed algorithm requires O(kmax ) scans of the graph, where
kmax is the largest coreness value of the graph.

Distributed algorithms. The problem of distributed k-
core decomposition was first studied in [13] and a new al-
gorithm for the computation of the k-coreness of a network
was proposed. The proposed approach has been applied to
two different computational models, one based on Pregel [11]
and one based on a block-centric approach [20].

k-core decomposition and maintenance in dynamic
graphs. Few works have studied the k-core decomposition
problem from large dynamic graphs [1, 10, 16, 8, 12, 6].
Li, Yu and Mao [10] have presented a k-core maintenance
approach in dynamic graphs. They proposed two pruning
techniques to remove the nodes whose coreness is definitely
unchanged after an update operation over the initial graph.
When a dynamic graph is updated, the minimal subgraph
for which k-core decomposition might have changed is com-
puted, instead of re-computing everything from scratch. The

proposed algorithm keeps track of core number for each ver-
tex and upon an update provides the subgraph for which k-
core decomposition needs to be updated. In [16], the authors
present an incremental k-core decomposition algorithm for
streaming graph data. The main idea of their approach is
to first locate a small subgraph that contains the set of ver-
tices whose coreness values have to be updated. Then it
processes the located subgraph to incrementally maintain
the coreness values of its vertices when a single edge is in-
serted or removed. In [1], the authors present a distributed
incremental algorithm for k-core maintenance in large dy-
namic graphs. The presented approach uses HBase to store
the graph data and hence to exploit the horizontally scaling
of its distributed storage. The distributed algorithm con-
structs a k-core subgraph by progressively removing edges
in parallel by remote calls on distributed nodes. It is worth-
while to mention that the approach presented in [1] uses a
fixed k value and does not determine all the updated k-cores
when dynamic changes are made to the graph.

Most of the above-cited solutions deal with core mainte-
nance of large dynamic graphs. However, these approaches
do not consider the case when the graph is too large to
be kept in main memory or when the graph is already dis-
tributed across several machines. Only a few works include
the core maintenance task in the case of large distributed
graphs, which is the addressed issue in this paper.

3. PROBLEM FORMULATION
Given an undirected graph G = (V,E) with n = |V | nodes

and m = |E| edges, the concept of k–core decomposition [5]
is condensed in the following two definitions:

Definition 1. A subgraph G(C) induced by the set C ⊆
V is a k-core if and only if ∀u ∈ C : dG(C)(u) ≥ k, and

G(C) is maximal, i.e., for each C ⊃ C, there exists v ∈ C
such that dG(C)(v) < k.

Definition 2. A node in G is said to have coreness k
(kG(u) = k) if and only if it belongs to the k-core but not
the (k + 1)-core.

dG(u) and kG(u) denote the degree and the coreness of
u in G, respectively; in what follows, however, G can be
dropped when it is clear from the context. The subgraph
of G induced by C is defined as G(C) = (C,E|C) where
E|C = {(u, v) ∈ E : u ∈ C ∨ v ∈ C}.

A k-core of a graph G = (V,E) can be obtained by recur-
sively removing all the vertices of degree less than k, until
all vertices in the remaining graph have degree at least k.
While such centralized solution is simple and works in lin-
ear time [5], the situation gets more complicated when the
issues of dynamism and scale are considered; even more so
when they are considered together. When new edges and
nodes are added or removed, this may cause a cascading
re-computation of the coreness of the nodes surrounding
the newcomers, that can potentially span the entire graph.
While re-computing the coreness of the entire graph is al-
ways an option, limiting the re-computation to as few nodes
as possible is desirable. When the graph is large and cannot
be stored or computed using a single machine, its vertex set
can be partitioned into p disjoint partitions {V1, . . . , Vp}; in
other words, V = ∪p

i=1Vi and Vi ∩ Vj = ∅ for each i, j such
that 1 ≤ i, j ≤ p and i 6= j. Such partitions induce p sub-
graphs Gi = (Vi, Ei), where Ei = E|Vi. In such subgraphs,



an edge (u, v) is called a frontier edge of Gi if u ∈ Vi and
v ∈ Vj 6= Vi, i.e. the edge links a node in Vi with a node in
a different partition. The set of frontier edges of a subgraph
Gi is denoted Fi; clearly, Fi ⊆ Ei. The set of all frontier
edges of a graph G is defined as Vf = ∪p

i=1Fi where Fi is
the set of frontier edges of a subgraph Gi; clearly, Vf ⊆ E.

Given a graph G(V,E), distributed in a number of par-
titions, and having the k-core decomposition already com-
puted over it, we are interested in finding the coreness after a
number of modifications (insertions or deletions) have taken
place on the graph, without having to restart the compu-
tation from scratch. A by-product of such a maintenance
solution is that the k-core can also be computed for the
first time by running the k-core computation in each partiti-
tion independently, and then considering the edges between
the partitions as updates, and applying the maintenance ap-
proach that updates the coreness of every node into the right
value considering the overall graph. After that, the k-core
will be given by the nodes whose coreness is k.

4. K-CORE COMPUTATION
We assume that the graph is subdivided in multiple par-

titions, each of them assigned to a different worker. In-
side each partition, a centralized algorithm to compute the
coreness is run. At that point, we treat large-scale and dy-
namism in the same way: whenever a new edge is added
to the graph, we first determine the set of candidate nodes
(nodes whose coreness needs to be updated); then, we com-
pute the correct values for the coreness of those nodes. The
set of nodes to be updated may span multiple partitions,
in particularly when frontier edges are added. The system
overview of our approach is illustrated by Figure 1.

Graph partitioning

A single large graph
Graph 

updates

Worker 1

Subgraph 1

Worker 2

Subgraph 2

Worker p

Subgraph p

Master

...

Figure 1: System overview.

As illustrated in Figure 1, each worker run a centralized
algorithm to compute the coreness of nodes of its associated
subgraph. The master worker orchestrates the execution of
the update process after considering graph changes. Our
approach operates in three computing modes:

• M2W mode. In this mode, message exchanges between
the master and all workers are allowed. The master
uses this mode in order to ask a distant worker to look
for candidate nodes. The worker uses this mode in

Table 1: Notations

G An undirected graph partitioned into p partitions
k(u) Coreness of u
N(u) Neighbors of u
Vf The set of all frontier edges of G
kCore(Gi) Executed by worker i and computes the coreness of all nodes of Gi

partitionID(u) Partition associated to node u

visited(u)
Indicates whether the node u is visited or not while we are looking
for reachable nodes.

pi.f() A remote call to the f() function on partition pi

order to send the set of computed candidate nodes to
the master.

• W2W mode. In this mode, message exchanges between
workers are allowed. The workers use this mode in
order to propagate the search for candidate nodes to
one or more distant workers.

• Local mode. In this mode, only local computation is
allowed.

Our algorithm exploits Theorem 1, first stated and
demonstrated by Li, Yu and Mao [10], that identifies what
are the candidate nodes that may need to be updated when-
ever we add or remove an edge:

Theorem 1. Let G = (V,E) be a graph and (u, v) be an
edge to be inserted in E, with u, v ∈ V . A node w ∈ V is
said to be a candidate to be updated based on the following
three cases:

• If k(u) < k(v), w is candidate if and only if w is k-
reachable from u in the original graph G and k = k(u);

• If k(u) > k(v), w is candidate if and only if w is k-
reachable from v in the original graph G and k = k(v);

• If k(u) = k(v), w is candidate if and only if w is k-
reachable from u, v or both in the original graph G and
k = k(u).

A node w is k-reachable from u if there exists a path be-
tween u and w in the original graph such that all nodes in the
path (including u and w) have coreness equal to k = k(u).
At this point, we can further prune the amount of possible
nodes using Theorem 2.

Theorem 2. Let G = (V,E) be a graph and let C be
the set of candidates nodes after considering the new edge
(u, v). Let N(w) be the set of neighbors of w and let X(w)
be the number of neighbors of w such that ∀w′ ∈ N(w),
k(w′) > k(w) or w′ ∈ C. Then, ∀w ∈ C, X(w) ≤ k(u)
implies that the coreness of u is definitely unchanged.

Proof. After considering an edge to be inserted (u, v),
the quantity X(w) consists in the number of neighbors
whose coreness values are larger than k(w). We note that if
X(w) ≤ k(w), the node w cannot belong to the (k(u) + 1)-
core and thus, the coreness of w remains equal to k(w).

In order to increase the performance of our approach, the
partitioning of the input graph need to be optimized in terms
of having balanced partitions and a small number of frontier
edges. In the following, we present basic algorithms for the
distributed k-core decomposition task. Table 1 summarizes
the notations used in our algorithms.



Algorithm 1 implements the distributed orchestration
mechanism that first computes the coreness in each of the
partitions, and then add the frontier edges one by one. This
algorithm is run by a master worker under the M2W com-
puting mode. Later, any kind of edge can be added, follow-
ing the same approach.

Algorithm 1: Distributed k-core decomposition

foreach j ∈ {1, . . . , P} do
pi.kCore(Gi)

foreach e = (u, v) ∈ Vf do
C ← getCandidates(e)
C ← pruneCandidatesInsert(C)
foreach u ∈ C do

pu ← partitionID(u)
pu.k(u)← pu.k(u) + 1

The update process is composed of three steps. The first
step consists in activating the W2W computing mode and
identifying the set of candidate nodes, i.e., the set of nodes
that may need to be updated (Algorithm 2). For each fron-
tier edge (u, v), the current coreness of nodes u and v are
compared. If the coreness of u (respectively v) is greater
than the coreness of v (respectively u), then the set of can-
didate nodes consists of nodes that are k-reachable from v
(respectively u), where k = k(v) (respectively, k(u)). If the
coreness of u is equal to the coreness of v, then the set of
candidate nodes consists of the union of nodes that are k-
reachable from u and from v, where k = k(v) = k(u).

Algorithm 2: set getCandidates (edge (u, v))

pu ← partitionID(u)
pv ← partitionID(v)
C ← ∅
if k(u) < k(v) then

C ← pu.reachable(u)

else if k(u) > k(v) then
C ← pv.reachable(v)

else
C ← pu.reachable(u) ∪ pv.reachable(v)

return C

The reachable (u) function returns the set of nodes that
are k-reachable from u, by performing a depth-first visit.
The visit can span multiple partitions, meaning that the
visit of a frontier edge can lead to the visit of a node in a
different partition. The pseudo-code shown below illustrates
the behavior of the visit; in the real implementation, the
nodes identified as potential candidates are sent back to the
master node that orchestrates the execution.

The second step consists in activating the Local computing
mode of our approach and selecting the set of nodes that
need to be updated from the set of candidate nodes. This
step is achieved by applying the pruning strategy introduced
in Theorem 2.

Finally, the third step consists in activating the M2W
computing mode and updating the coreness values of the
set of nodes computed in the second step.

It is important to highlight that the algorithms presented
above aim to compute the distributed k-core decomposition

Algorithm 3: set reachable (node u)

set C ← ∅
if visited(u) = false then

C ← C ∪ {〈u, k(u), N(u)〉}
visited(u)← true
pu ← partitionID(u)
foreach v ∈ N(u) do

if k(v) = k(u) then
pv ← partitionID(v)
if pu = pv then

C ← C ∪ reachable(v)

else
C ← C ∪ pv.reachable(v)

return C

Algorithm 4: pruneCandidatesInsert (set C)

changed← true
while changed do

changed← false
foreach 〈u, k(u), N(u)〉 ∈ C do

count← 0
foreach v ∈ N(u) do

if 〈v, k(v), N(v)〉 ∈ C or k(v) > k(u) then
count← count + 1

if count ≤ k(u) then
changed← true
C ← C − {〈u, k(u), N(u)〉}

return C

in a large partitioned graph. The frontier edges of the orig-
inal graph are considered one by one after computing the
k-cores of the distributed graph partitions separately. The
proposed approach deals with frontier edges as edge inser-
tions in a dynamic graph. Consequently, the proposed al-
gorithms can be simply used to deal with edge insertions in
large dynamic graphs. Algorithm 5 implements the update
process for edge insertion in a large dynamic graph.

Algorithm 5: updateInsertions (set S)

foreach e ∈ S do
C ← getCandidates(e)
C ← pruneCandidatesInsert(C)
foreach u ∈ C do

pu ← partitionID(u)
pu.k(u)← pu.k(u) + 1

The edge deletion task is slightly different from edge inser-
tion. Algorithms 6 implement the update process for edge
deletion in a large dynamic graph.

Algorithm 6 is run by a master worker under the M2W
computing mode. It consists of three main steps. The first
step consists in activating the W2W computing mode and
identifying the set of nodes that may need to be updated
after the deletion using Algorithm 2. The second step con-
sists in activating the Local computing mode and selecting
the set of nodes that need to be updated from the set of
candidate nodes. The set of nodes with unchanged coreness



Algorithm 6: updateDeletions (set S)

foreach e ∈ S do
C ← getCandidates(e)
C ← C − pruneCandidatesDelete(C)
foreach u ∈ C do

pu ← partitionID(u)
pu.k(u)← pu.k(u)− 1

values is computed by Algorithm 7. We notice that for edge
deletions the set of nodes that need to be updated is slightly
different from the set computed by Algorithm 4.

Algorithm 7: pruneCandidatesDelete (set C)

changed← true
while changed do

changed← false
foreach 〈u, k(u), N(u)〉 ∈ C do

count← 0
foreach v ∈ N(u) do

if 〈v, k(v), N(v)〉 ∈ C or k(v) > k(u) then
count← count + 1

if count < k(u) then
changed← true
C ← C − {〈u, k(u), N(u)〉}

return C

The last step of the edge deletion task consists in activat-
ing the M2W computing mode and updating the coreness
values of the nodes that need to be updated.

5. EXPERIMENTS
We have performed an extensive set of experiments to

evaluate the effectiveness and efficiency of our approach on
a number of different real and synthetic datasets. Additional
and more detailed information about our datasets and our
experiments in general can be found in the following link:
http://db.disi.unitn.eu/pages/dkcore/.

5.1 Experimental data
Since we are interested in the core of graph data, the char-

acteristic properties of our datasets are the number of nodes,
edges, the diameter, the average clustering coefficient and
the maximum coreness. These properties for the datasets
that we have used in our work are indicated in Table 2. We
have used two groups of datasets: (1) real-world datasets,
made available by the Stanford Large Network Dataset col-
lection [9] and (2) synthetic datasets, created by a graph
generator based on the Nearest Neighbor model [15], that
builds undirected graphs with power-law degree distribution
with exponent between 1.5 and 1.75, matching that of online
social networks.

5.2 Experimental environment
We have implemented our approach on top of the akka

framework, a toolkit and runtime for building highly concur-
rent, distributed, resilient message-driven applications. In
order to evaluate the performance of our approach, we used
a cluster of 17 m3.medium instances on Amazon EC2. Each

Table 3: Experimental results

Dataset
Number of

frontier edges
AIT (ms) ADT (ms)

inter intra inter intra
DS1 61,803 (87.51%) 27 6 20 4
DS2 126,720 (87.54%) 39 16 27 9
DS3 320,318 (87.54%) 42 10 32 8
DS4 643,189 (87.57%) 30 10 25 8
ego-Facebook 77,253 (87.55%) 38 15 32 10
email-Enron 161,055 (87.61%) 32 8 28 6
roadNet-TX 1,681,830 (87.51%) 28 9 25 7
roadNet-CA 2,420,674 (87.49%) 30 12 26 10
com-LiveJournal 30,348,426 (87.50%) 256 30 205 27
soc-LiveJournal 59,916,050 (86.84%) 579 27 499 25

m3.medium instance contained 1 virtual 64-bit CPU, 3.75 GB
of main memory, and a 8 GB of local instance storage. We
also implemented two existing approaches for k–core decom-
position in large dynamic graphs. First, we implemented Li
et al.’s approach [10] and we run it on a machine equipped
with two Intel(R) Xeon(R) E5-2440 CPUs (2.40GHz) and
192 GB of memory. Second, we implemented the HBase-
based approach of Aksu et al. [1] and we run it on a cluster
of 9 m3.medium instances on Amazon EC2 (1 master and 8
slaves).

5.3 Experimental protocol
In order to simulate dynamism in each dataset, we con-

sider two update scenarios. For each scenario, we measure
the performance of the system to update the core numbers of
all the nodes in the considered graph after insertion/deletion
of a constant number of edges.

• In the inter-partition scenario, we either delete or in-
sert 1000 random edges connecting two nodes belong-
ing to different partitions.

• In the intra-partition scenario, we either delete or in-
sert 1000 random edges connecting two nodes belong-
ing to the same partition.

We consider three figures of merit to evaluate our approach.
First, we measure the average insertion time (AIT) and

the average deletion time (ADT) in the two proposed sce-
narios. We also compare the results of our algorithm with
existing solutions for k–core decomposition in large dynamic
graphs including Li et al.’s approach [10] and Aksu et al.’s
approach [1].

Second, we study the data communications and network-
ing. In this context, we measure the amount of exchanged
data needed to compute the task of k-core decomposition.

Third, we study the scalability of our approach with re-
spect to the number of machines in our cluster. In this
context, we vary the number of worker machines and we
measure the average insertion/deletion time for each update
scenario.

5.4 Experimental results

Speedup. Table 3 illustrates the results obtained with both
the real and the synthetic datasets. For each dataset, we
measure the number of frontier edges and we record the av-
erage insertion time (AIT) and the average deletion time
(ADT) over the 1000 insertions/deletions for both inter-
partition and intra-partition scenarios. To generate the re-



Table 2: Experimental data

Dataset Type ] Nodes (N) ] Edges (M) � Avg. CC Max(k)
DS1 Synthetic 10,000 70,622 4 0.3977 33
DS2 Synthetic 20,000 144,741 4 0.3935 38
DS3 Synthetic 50,000 365,883 4 0.3929 42
DS4 Synthetic 100,000 734,416 4 0.3908 46
ego-Facebook Real 4,039 88,234 8 0.6055 115
email-Enron Real 36,692 183,831 11 0.4970 43
roadNet-TX Real 1,379,917 1,921,660 1,054 0.0470 3
roadNet-CA Real 1,965,206 2,766,607 849 0.0464 3
com-LiveJournal Real 3,997,962 34,681,189 17 0.2843 296
soc-LiveJournal Real 4,847,571 68,993,773 16 0.2742 318

sults of Table 3, we randomly partition the graph dataset
into 8 partitions.

As shown in Table 3, we observe that in the intra-partition
scenario, the values of the average insertion/deletion time
are much smaller than those in the inter-partition scenario.
This can be explained by the fact that the inserted/deleted
edges in the intra-partition scenario are internal ones. Con-
sequently, the amount of data to be exchanged between the
distributed machines in the case of internal edges is smaller,
in most cases, than the amount of exchanged data in the
case of edges of the inter-partition scenario (i.e., frontier
edges). During the k-core maintenance process after inser-
tion/deletion of an internal edge, there is always the chance
of not having to visit distributed workers/partitions other
than the partition that holds the internal edge.

Figure 2 presents a comparison of our approach with both
the sequential approach proposed by Li et al. and the
HBase-based approach proposed by Aksu et al. in terms
of average insertion/deletion time. For our approach, we
used 9 m3.medium instances on Amazon EC2 (1 acting as a
master and 8 acting as workers). For the HBase-based ap-
proach, we used 9 m3.medium instances on Amazon EC2 (1
master node and 8 slave nodes).

We notice that the Li et al.’s approach produces better re-
sults in terms of average insertion/deletion time for almost
all small datasets. This can be explained by the communi-
cation cost of our approach compared to Li et al.’s approach
which performs in-memory and centralized computing. For
road network and LiveJournal datasets, our approach per-
forms much faster that Li et al.’s approach with both inter-
partition and intra-partition scenarios. It is also important
to mention here that the Li et al.’s approach has failed to
deal with LiveJournal datasets using one of the m3.medium

instances used for the evaluation of our approach due to lack
of memory.

As shown in Figure 2, our approach allows much better
results compared to the HBase-based approach for almost
all datasets. It is noteworthy to mention that the presented
runtime values of the HBase-based approach correspond to
the maintenance time of only one fixed k value core (k =
max(k) in our experimental study). This means that, for
each dataset, the maintenance process of the HBase-based
approach needs to be repeated max(k) times in order to
achieve the same results as our approach.

Data communications and networking. In order to
study data communications and networking, we begin by
examining the amount of exchanged data between the dis-
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Figure 3: Amount of exchanged data.

tributed machines. Then, we study the impact of the parti-
tioning method and the number of graph partitions on the
amount of exchanged data between the master node and
the worker nodes. Figure 3 shows the average value of the
amount of exchanged data between the master node and the
worker nodes. The amount of exchanged data is shown in
log-scale. For each dataset, we present the mean value of
the exchanged data. As illustrated in Figure 3, the amount
of data to be exchanged in the intra-partition scenario is
much smaller than the amount of exchanged data in the
inter-partition scenario.

In order to study the impact of the number of partitions
on the amount of exchanged data, we show in Figure 4, for
each number of partitions, the mean value of the exchanged
data and the standard deviation value which corresponds
to the error bar. This standard deviation gives a general
idea of how the values of the exchanged data are concen-
trated around the mean value. We note that the amount of
exchanged data is inversely proportional to the number of
partitions in almost all datasets (see Figure 4).

Scalability. To study the scalability of our approach and to
show the impact of the number of worker machines on the
maintenance task runtime in the case of large-scale networks,
we measured the average insertion/deletion time of our ap-
proach for each number of worker machines. We presents
these results in Figure 5.
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Figure 2: Average insertion/deletion time.
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Figure 4: Impact of the number of partitions on the amount
of exchanged data.

As illustrated in Figure 5, our approach scales up as the
number of worker machines increases. In fact, the average
insertion/deletion time of our approach is inversely propor-
tional to the number of such machines.

6. CONCLUSIONS
The paper deals with the problem of distributed k-core

decomposition in large dynamic networks. Most of the ex-
isting approaches solve the problem of k-core maintenance
for graphs that can fit into the main memory of one single
machine. They do not consider the cases of already dis-
tributed graphs and graphs that can not fit into one single
machine. In this paper, we have introduced an efficient dis-
tributed and streaming k-core decomposition approach for
large and dynamic networks. Our approach deals with graph
changes/updates by selecting only the nodes of a subgraph
of the original graph that really need to update their core
numbers. We implemented our approach on top of akka
framework, a toolkit and runtime for building highly concur-
rent, distributed, and resilient message-driven applications.

By running experiments on a variety of both real and syn-
thetic datasets, we have shown that the proposed method
is interesting in the case of very large graphs with a very
satisfactory performance and scalability for large graphs.
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and U. V. Çatalyürek. Streaming algorithms for k-core
decomposition. PVLDB, 6(6):433–444, Apr. 2013.

[17] S. B. Seidman. Network structure and minimum
degree. Social Networks, 5(3):269 – 287, 1983.

[18] T. von Landesberger, A. Kuijper, T. Schreck,
J. Kohlhammer, J. van Wijk, J.-D. Fekete, and
D. Fellner. Visual analysis of large graphs:
State-of-the-art and future research challenges.
Computer Graphics Forum, 30(6):1719–1749, 2011.

[19] D. Wyatt. Akka Concurrency. Artima Inc., USA, 2013.

[20] D. Yan, J. Cheng, Y. Lu, and W. Ng. Blogel: A
block-centric framework for distributed computation
on real-world graphs. PVLDB, 7(14):1981–1992, 2014.


